North Park Primary School

Years 4, 5 and 6
A Guide for Parents

At North Park Primary, we believe that children should be confident and proficient mathematicians. We have a 'Can do' attitude towards maths and the support of parents in developing this is crucial. When working together as a partnership, parents and school can foster an enthusiasm in maths to support children in their mathematical self-belief. At North Park Primary we follow the White Rose Maths Hub schemes of learning.

When planning lessons, teachers follow the cycle of 'concrete', pictorial, abstract' (CPA approach) and this guidance aims to set out examples of how we develop children's skills of addition, subtraction, multiplication and division using this cycle of teaching.
'Concrete'- Each skill is often first modelled with concrete materials (e.g. base ten, cubes, cuisenairre rods). This is the "doing stage". During this stage, students use concrete objects to model problems. The CPA approach brings concepts to life by allowing children to experience and handle physical (concrete) objects. For example, if a problem involves adding pieces of fruit, children can use counters or cubes which represent the fruit.
'Pictorial'- Pictorial is the "seeing" stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures, diagrams or models that represent the objects from the problem.
'Abstract'- Abstract is the "symbolic" stage, where children use abstract symbols to model problems. Students will not progress to this stage until they have demonstrated that they have a solid understanding of the concrete and pictorial stages of the problem. The abstract stage involves the teacher introducing abstract concepts (for example, mathematical symbols). Children are introduced to the concept at a symbolic level, using only numbers, notation, and mathematical symbols (for example, $+,-, x, /$) to indicate addition, multiplication or division.

	Pictorial- Abstract-	Add decimals with up to 3 decimal places Concrete- Continue to use decimal place value counters and model exchange for addition. Pictorial- Abstract- Pupils will also learn to add three decimal numbers. $\begin{gathered} 3.452 \\ 9.74 \\ 29.338+ \\ \hline \end{gathered}$

Abstract-Children should be encourages to use their times table facts; they could also represent repeated addition on a number line.

Division with up to 3 digits by 1digit-concrete and pictorial Concrete-Use place value counters to group e.g. 615 divided by 5.

Pictorial-Represent the place value counter pictorially.

Abstract-

Rosie is calculating 96 divided by 4 using place value counters.
First, she divides the tens. She has one ten remaining so she exchanges one ten for ten ones. Then, she divides the ones.

Use the above methods to write answers.

$432 \div 15$ becomes				
		2	8	r12
1	$5 \longdiv { 4 }$	3	2	
	3	0	0	
	1	3	2	
		2	0	
		1		

$432 \div 15$ becomes				
			2	
1	5	4	3	
		3	0	15×20
		1	3	
		1	2	15×8
			1	
$\frac{12}{15}=\frac{4}{5}$				
Answer: $28 \frac{4}{5}$				

Answer: 28 remainder 12
Answer: $28 \frac{4}{5}$

Concrete- Use place value counters and group e.g. 3.69 divided by 3

Pictorial- Use part-whole and bar models

A box of chocolates costs 4 times as much as a chocolate ba Together they cost $£ 7.55$

Abstract-Short division to divide decimals by an integer.

